
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Persistent monitoring of digital ICs to verify
hardware trust
Justin Richard Rilling
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Rilling, Justin Richard, "Persistent monitoring of digital ICs to verify hardware trust" (2011). Graduate Theses and Dissertations. 10321.
https://lib.dr.iastate.edu/etd/10321

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10321?utm_source=lib.dr.iastate.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Persistent monitoring of digital ICs to verify hardware trust

by

Justin Richard Rilling

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Joseph Zambreno, Major Professor

Phillip Jones
Thomas Daniels

Iowa State University

Ames, Iowa

2011

Copyright c© Justin Richard Rilling, 2011. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my wife, Jessica

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. RELATED WORK . 7

2.1 Hardware Trojan Characterization . 7

2.1.1 Physical Characteristics . 7

2.1.2 Activation Characteristics . 8

2.1.3 Action Characteristics . 8

2.2 Hardware Trust Verification . 9

2.2.1 One-Time Methods . 10

2.2.2 Persistent Methods . 15

CHAPTER 3. APPROACH . 17

3.1 System Monitor Design . 18

3.1.1 Digital Signal Monitors (DSMs) . 19

3.1.2 Signature Detectors (SDs) . 21

3.1.3 Start Event Monitors (SEMs) . 22

3.2 System Monitor Generation . 23

3.2.1 Signature Specification . 24

3.2.2 SMG Prototype . 26

www.manaraa.com

iv

3.3 System Monitor Realization . 28

3.3.1 Performance/Cost Considerations . 29

3.3.2 Secure Process Flow . 29

CHAPTER 4. EXPERIMENTAL ANALYSIS 30

4.1 Experimental Setup . 30

4.1.1 Signature Specifications . 31

4.1.2 Benchmarks . 33

4.2 Results . 35

4.2.1 Overhead . 35

4.2.2 Effectiveness . 36

CHAPTER 5. CONCLUSIONS . 38

5.1 Summary of Results . 38

5.2 Future Work . 39

APPENDIX PROOF OF CONCEPT . 41

BIBLIOGRAPHY . 51

www.manaraa.com

v

LIST OF TABLES

Table 4.1 Overhead of the system monitor created for each signature specification 36

Table 4.2 Results of trust benchmark simulations. An “X” indicates a detection

of the hardware Trojan activation while a “–” indicates the contrary. . 37

Table A.1 Ring oscillator emulator module overhead 47

www.manaraa.com

vi

LIST OF FIGURES

Figure 1.1 The number of transistors in latest-technology chips [8, 28, 47] has in-

creased as predicted by Moore’s Law which states that chip capacity

will double every two years. This is due to continual improvements in

transistor technology. 2

Figure 1.2 Global IC supply chain. Blue boxes represent pre-silicon stages of the

supply chain while green boxes represent fabrication and post-silicon

stages. 3

Figure 1.3 Overview of our persistent monitoring approach 4

Figure 1.4 Digital signal pulse decomposition and signature definition 5

Figure 2.1 Trojan taxonomy (source: [67, 70]) . 8

Figure 3.1 Digital signal signature taxonomy . 18

Figure 3.2 Top-level design of the trusted system monitor which is composed of

several Digital Signal Monitors (DSMs) that each filter a digital signal

of an untrusted IC for a set of signatures 19

Figure 3.3 Example digital signal monitor architecture. Blocks highlighted in blue,

green, and red represent three typical interconnections of the DSM ar-

chitecture. 20

Figure 3.4 Example signature detector FSM . 21

Figure 3.5 Start event monitor design . 22

Figure 3.6 CORE Generator batch mode (source [72]) 25

Figure 3.7 Digital signal signature properties and values 26

www.manaraa.com

vii

Figure 3.8 Overview of the system monitor generator prototype functionality . . . 27

Figure 4.1 Experimental setup consisting of an RS232 core embedded in an un-

trusted IC that transmits ten packets 31

Figure 4.2 RS232 signatures specifications. Portions of the signal highlighted in

red are constrained by the specification. 32

Figure A.1 Automated testing environment . 44

Figure A.2 Recording ring oscillator responses for all challenge vectors 45

Figure A.3 Ring oscillator emulator module . 46

Figure A.4 Our Trojan Taxonomy (derived from [35]) 48

www.manaraa.com

viii

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. Joseph Zambreno, for his support and patience

throughout my pursuit for a master’s degree in computer engineering. He has challenged me to

develop new skill sets, provided important feedback, and fostered an environment for growth.

I owe a large part of my professional development to him.

Dr. Phillip Jones has been a positive influence and also deserves a hearty thank you for his

assistance in my graduate studies. His “stop by anytime” approachability and hands-on tactics

to education are deeply appreciated. I would also like to specifically extend gratitude to my

committee members Dr. Joseph Zambreno, Dr. Phillip Jones, and Dr. Thomas Daniels, for

their investments of time and energy to improve this work.

A special thanks to my wife Jessica for her support on the homefront in all the big and small

ways that are hard to measure, but certainly ensured my success. Thank you to my family for

providing me a strong foundation and for leading by example. I attribute my work ethic and

dedication to excellence to you. And finally, thank you to my friends who provided comic relief

as well as many subtle, and not so subtle, reminders to strive for a life/work balance.

www.manaraa.com

ix

ABSTRACT

The specialization of the semiconductor industry has resulted in a global Integrated Circuit

(IC) supply chain that is susceptible to hardware Trojans – malicious circuitry that is embedded

into the chip during the design cycle. This nefarious attack could compromise the mission-

critical systems which implement these devices. While a trusted domestic IC supply chain

exists with resources such as the Trusted Foundry Program, it’s highly desirable to utilize

the high yield, fast turn-around time, low cost, and leading-edge technology of the global IC

supply chain. Research into the verification of hardware trust has made significant progress

in recent years but is still far from a single, comprehensive solution. Most proposed solutions

are one-time implementable methods that attempt to detect hardware Trojans during the

verification stage of the IC development process. While this is a desirable solution, it’s not

realistic given the current limitations of hardware Trojan detection techniques. We propose a

more comprehensive solution that involves the persistent verification of hardware trust in the

field, in addition to several one-time methods implemented during IC verification. We define a

persistent verification framework that involves the use of a few ICs from a secure process flow

to persistently monitor and verify the operation of several untrusted ICs from the global supply

chain. This allows the system integrator to realize the benefits of the global IC supply chain

while maintaining the integrity of the system. We develop a system monitor which filters the

IO of untrusted digital ICs for a set of patterns, which we refer to as digital signal signatures,

to verify the operation of the devices.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Integrated Circuits (ICs) are the building blocks of modern electronics. They are used in

everything from simple appliances to mission-critical devices. The integrity of ICs has come

into question following recent events like the scandal in which 59,000 counterfeit ICs from

China were sold to the US Navy [25]. These chips did not meet military specifications, making

them more prone to failure in the field. In addition to the risk of low quality counterfeit chips,

there has also been concern regarding the malicious modification of chips during the design or

manufacturing process. This is known as a hardware Trojan attack. An adversary can insert

a kill switch into a chip to disable it via a remote signal or add a backdoor to subvert the

circuit’s security mechanisms. This is a particularly nefarious attack due to the ease at which

an adversary can infiltrate the global IC supply chain and the difficulty of detecting malicious

modifications once they are inserted into the IC.

When ICs were first developed, the threat of a hardware Trojan attack was minimal. Semi-

conductor companies typically designed and fabricated their own ICs – a viable economic

engagement for a single entity at that time and, in many cases, a necessary one since IC

manufacturing practices were not standardized. Transistor counts on state-of-the-art ICs only

numbered in the hundreds to thousands so it was feasible to detect malicious modifications via

design observation and functional testing.

Since then, the semiconductor industry has experienced exponential growth due to the

continual improvement of transistor technology. This improvement is reflected in the increasing

number of transistors available on state-of-the-art chips, which has doubled every two years as

predicted by Moore’s Law (Fig. 1.1). As transistor technology improved, the semiconductor

industry shifted to the highly specialized, global IC supply chain shown in Fig. 1.2. Financial

www.manaraa.com

2

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

T
ra

n
s
is

to
r

C
o

u
n

t

State-of-the-Art Integrated Circuits Moore's Law

Intel 4004 Microprocessor
2,300 Transistors

Altera Stratix V FPGA
3.9 Billion Transistors

1010

109

108

107

106

105

104

103

Figure 1.1: The number of transistors in latest-technology chips [8, 28, 47] has increased as

predicted by Moore’s Law which states that chip capacity will double every two years. This is

due to continual improvements in transistor technology.

pressure and a need for greater design productivity has resulted in the common practice of

outsourcing and offshoring IC fabrication, packaging/assembly and verification as well as some

of the design effort [19, 27]. The global IC supply chain is more vulnerable to a hardware Trojan

attack. An adversary can infiltrate the IC supply chain as a hardware designer, Electronic

Design Automation (EDA) toolset developer, foundry worker, a Semiconductor Assembly and

Test Services (SATS) company employee, etc. It’s no longer feasible for a single entity to

oversee the end-to-end development process of the typical IC. The majority of post-silicon

services are located offshore which has raised concerns regarding national security. Also, since

modern state-of-the-art ICs contain on the order of a billion transistors malicious modifications

to these devices can easily go unnoticed.

In 2003, the U.S. Senate expressed their concerns regarding the globalization of the U.S.

Semiconductor Industry, stating this migration posed a threat to national security and re-

questing action by the Department of Defense (DoD) and intelligence community [62]. Similar

reports were published by the U.S. Defense Science Board task force [18], Semiconductor Equip-

ment and Materials International (SEMI) [1] and IEEE Spectrum [4]. In 2004, the DoD and

www.manaraa.com

3

Market Leading Companies HQ Location

Qualcomm United States

Broadcom United States

AMD United States

ARM United Kingdom

MIPS Technologies United States

Synopsys United States

Cadence Design Systems United States

Synopsys United States

Mentor Graphics United States

TSMC Taiwan

UMC Taiwan

SMIC China

ASE Taiwan

SPIL Taiwan

STATS ChipPAC Singapore

Fabless Design

3rd-Party IP

EDA Toolsets

Fabrication

Packaging/Assembly

(a) Leading companies [7, 19, 39, 48]

Layout Geometry
EDA Toolset

3rd Party IP

Verification

Fabrication

Design RTL

Test Vectors

IC
Packaging/
Assembly

Fabless IC
Designer

(b) Process flow (derived from [16])

Figure 1.2: Global IC supply chain. Blue boxes represent pre-silicon stages of the supply chain

while green boxes represent fabrication and post-silicon stages.

the National Security Agency (NSA) initiated the Trusted Foundry Program to establish a

trusted domestic IC supply chain. To date, 49 accredited microelectronic service providers

participate in the program offering a variety of services from design to fabrication to verifica-

tion. Entities such as Sandia National Laboratories and Honeywell International provide design

services, IBM Burlington provides fabrication services, and Rockwell Collins provides packag-

ing/assembly/testing services [64]. While the domestic supply chain provides trustworthy ICs,

it’s desirable to utilize the high yield, fast turn-around time, low cost [52], and leading-edge

technology [30] of the global supply chain.

The U.S. government has provided funding for research into the detection of hardware

Trojans in ICs from the global supply chain [51, 53]. This research, along with other academic

contributions, has primarily focused on two aspects of hardware Trojan detection.

• Activating hardware Trojans, which are inherently difficult to trigger

• Side-channel analysis methods to detect a hardware Trojan once it’s, at least partially,

activated

While progress has been made in both areas, each still faces significant challenges. Trojan

activation methods must reduce an enormous set of possible input combinations, which is

increasing with rising circuit complexity, to a subset that is practical to test and likely to

trigger a Trojan if it exists on the chip. Side-channel analysis must distinguish changes in

www.manaraa.com

4

System Integrator

Valid/Invalid

Signatures

System

Monitor

Generator

Secure

Process

Flow

System

Monitor HDL

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

Untrusted

IC

I

I

I

O

O

O

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

Untrusted

IC

I

I

I

O

O

O

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

Untrusted

IC

I

I

I

O

O

O

System

Monitor

Figure 1.3: Overview of our persistent monitoring approach

power and delay characteristics due to process variation, which is increasing with decreasing

transistor feature sizes, from the small signature of a hardware Trojan.

Most Trojan detection methods are designed for a one-time implementation during the

verification stage of the IC development process. While it’s certainly desirable to detect a

hardware Trojan embedded in an IC prior to deployment in the field, it’s not completely

realistic given the current limitations of these methods. Moreover, the issues that plague

hardware Trojan detection will increase as transistor technology continues to improve [9]. A

more comprehensive framework is needed to address the hardware trust issue. We propose

persistent verification of untrusted ICs in the field in addition to the one-time verification of

ICs during the development cycle. A few trusted ICs, such as those from the domestic supply

chain, can monitor and persistently verify many untrusted ICs, such as those from the global

supply chain. This allows the system integrator to reap the benefits of ICs from the global

supply chain while continually verifying that an undetected Trojan has not comprised the

system.

Our approach to the persistent verification of untrusted ICs is shown in fig. 1.3. We develop

a system monitor that filters the IO signals of untrusted digital ICs for a set of patterns, which

we call digital signal signatures, to verify the chips are operating as expected. The process to

develop a system monitor begins with the system integrator defining a set of valid and invalid

signatures in a high-level language. A design automation tool, referred to as the system monitor

www.manaraa.com

5

Digital Signal

Digital Signal

Signature

Pulse
Constraint

Low

Logic Level
Constraint

Timing
Constraints+

Don’t_Care

High

Max_Width

Min_Width

High, Width T1
Low,

Width T2
� High, Width T3 Low, Width T4� �

Pulse

Decomposition

PC0 PC1 PC2 PC3

Figure 1.4: Digital signal pulse decomposition and signature definition

generator, then translates the high-level specification into a hardware descriptive language

(HDL) that describes the monitor hardware. This HDL is then transformed into physical

monitoring hardware via a trusted process flow using resources such as the Trusted Foundry

Program.

The system monitor searches for a set of valid signatures as well as a set of invalid signatures

based on the system integrator’s unique knowledge of the system. The detection of a valid

signature provides a certain level of confidence that the chip is functioning correctly. Conversely,

the detection of an invalid signature proves malicious circuitry has been activated. While output

signals are the primary monitoring target, input signals can also be monitored. Unexpected

behavior discovered in input signals may indicate an adversary’s attempt to trigger a hardware

Trojan.

Figure 1.4 shows the decomposition of a digital signal into a series of consecutive pulses,

also referred to as a pulse train. The pulse train is fully described by specifying the logic-

level/width of each pulse and the pulse order. We call this description of a pulse train a digital

www.manaraa.com

6

signal signature. Each pulse constraint is a combination of a logic level constraint and timing

constraints. The logic level constraint defines the expected signal level of the pulse. It’s an

optional constraint and is either “low” or “high” when specified and “don’t care” otherwise.

The timing constraints define the expected width of the pulse. This width is expressed with

minimum and maximum bounds. If an exact width is specified then the two bounds are set

equal. This constraint is mandatory as a pulse must have a finite width to be meaningful.

In this work, we propose a persistent monitoring approach to verify hardware trust in digital

ICs. We develop a system monitor architecture that filters the IO of untrusted ICs for a set of

digital signal signatures. We define a high-level language to specify these signatures and build

a prototype system monitor generator to translate signatures into HDL. We also evaluate the

effectiveness of our monitoring system as well as the amount of overhead generated.

The rest of the paper is organized as follows: Chapter 2 describes work related to the

verification of hardware trust. Chapter 3 focuses on the design, generation, and realization

of the system monitor. Chapter 4 analyzes our approach in terms of security and overhead.

Chapter 5 provides a summary of our work as well as a discussion of future work. We’ve also

included an Appendix section describing our experiences in creating proof-of-concept hardware

Trojans.

www.manaraa.com

7

CHAPTER 2. RELATED WORK

2.1 Hardware Trojan Characterization

Hardware Trojans must be accurately characterized to enable the development of effective

detection schemes. The classic definition of a hardware Trojan is a circuit that’s composed of an

activation mechanism and a malicious action. Wang, Tehiranipoor, and Plusquellic transformed

this definition into a detailed taxonomy of hardware Trojans [70]. In their taxonomy (shown

in Fig. 2.1) hardware Trojans are classified according to their physical, activation, and action

characteristics. The following sections describe each category in detail.

2.1.1 Physical Characteristics

The four physical characteristics of a Trojan are distribution, structure, size and type. The

distribution parameter specifies the Trojan’s physical location on the chip. Typical locations

for Trojans to reside on a chip include the processor, memory, input/output hardware, power

supply, and clock grid [35]. A Trojan’s structure refers to the physical change the Trojan

imposes on the original circuit. Some Trojans, as described in [63], only modify manufacturing

procedures and do not change the physical layout of the target hardware. Other Trojans,

remove or add transistors which will result in a different layout and will change power and

delay characteristics. In [32], the target hardware was optimized to offset the Trojan’s size

and impact on circuit structure. Trojan size refers to the number of transistors that are

modified, added, or removed from the original circuit. Small Trojans are easier to activate but

more difficult to detect [70]. A Trojan’s type is either functional or parametric. Functional

Trojans add or remove transistors from the device while parametric Trojans modify existing

components. The addition of a kill switch is a functional Trojan while the thinning of a wire

www.manaraa.com

8

Logic Sensor

Always On Conditional Antenna Sensor

Internally

Activated

Externally

Activated

Activation

Characteristics

Distribution Size

Physical

Characteristics

Parametric Functional

Type

Layout Change Layout Same

Structure

Change Disable

Transmit

Information

Modify

Specification

Action

Characteristics

Modify

Function

Trojan

Classification

Figure 2.1: Trojan taxonomy (source: [67, 70])

to reduce reliability is a parametric Trojan.

2.1.2 Activation Characteristics

Trojans are either activated via mechanisms internal to the chip or through external mech-

anisms. Some internally activated Trojans are “always on” while others are triggered by a logic

and/or sensor circuit. In the Activation Mechanism section of the Appendix, we describe a

ring oscillator-based temperature sensor that triggered Trojans when a specific logic sequence

was observed and the chip temperature was elevated a few degrees above room temperature.

External triggers typically use an antenna or sensor mechanism to activate the Trojan. These

are particularly desirable triggers for an adversary since they can be activated remotely.

2.1.3 Action Characteristics

Once activated, a hardware Trojan executes a malevolent action. A Trojan can transmit

secret information from a chip to undermine the security of the system. For instance, security

mechanisms in hardware architectures like AEGIS [66], XOM [41], and the TPM [23] all rely on

the secrecy of hardware keys. These security mechanisms can be circumvented if the hardware

keys are leaked. In [42], a class of lightweight Trojans were developed which leaked information

via power side-channels. In [22], the Universal Serial Bus (USB) protocol was manipulated to

www.manaraa.com

9

transmit secret data. Another type of Trojan action is the modification of the original circuit

specification to reduce reliability. In [63], slight alterations were introduced to IC fabrication

to reduce the lifetime of the chip by accelerating transistor wearout mechanisms like Negative

Bias Temperature Instability (NBTI) and Hot Carrier Injection (HCI)-this type of action is very

difficult to detect and is especially treacherous in systems like space satellites where maintenance

is difficult and costly. The third type of Trojan action is the functional modification of the

circuit. An adversary can add/remove transistors to modify or disable the functionality of the

circuit. In [37], processor hardware was compromised to create a login backdoor which gave

the attacker privileged access to the machine.

2.2 Hardware Trust Verification

One of the largest single research efforts into hardware Trojan detection began in 2007. The

Defense Advanced Research Projects Agency (DARPA) launched a three-year program called

TRUST for Integrated Circuits to develop a Trojan detection method with an accuracy rate

of at least 90% and a low false positive rate [51]. Test chips were created by the University of

Southern California Information Sciences Institute. Lincoln Labs at the Massachusetts Institute

of Technology was responsible for inserting malicious circuitry in the chips. Three groups:

Xradia, Luna Innovations, and Raytheon, worked to develop efficient methods for locating the

malicious insertions. The John Hopkins Applied Physics Lab then established methods to

measure success [4]. The results from this study have not been published and therefore cannot

be integrated into academic research at this time, but its existence does speak to the validity

of Trojan research.

In 2010, the TRUST for Integrated Circuits program was succeeded by the Integrity and

Reliability of Integrated Circuits (IRIS) program. The objective of this new program was

to “develop the technology to derive the functionality of an IC to determine unambiguously if

malicious modifications have been made to that IC, and to accurately determine the IC’s useful

lifespan from a physical perspective” [53].

Several Trojan detection schemes have been published recently in academic research. While

www.manaraa.com

10

no scheme is a comprehensive solution to Trojan detection, each proposes an effective method

of detection for a specific subset of hardware Trojans and/or a specific IC architecture. Trojan

detection schemes can be divided into one-time and persistent methods. One-time methods

are typically implemented during the verification stage of IC development. The IC is tested

with high coverage input vectors that are likely to trigger a Trojan if it exists while monitoring

the IC for uncharacteristic measurements. Persistent methods are implemented in the field.

They continually monitor the IC for abnormal behavior that might indicate the activation of

a hardware Trojan.

2.2.1 One-Time Methods

One-time hardware trust verification research is divided into two areas: the activation of

hardware Trojans and the detection of, at least partially, activated Trojans via side-channel

analysis. Trojan activation research faces the challenge of how to reduce the enormous size of

possible inputs, which is increasing with rising circuit complexity, to a high coverage subset

that is likely to trigger a Trojan if it exists on the chip. Side-channel analysis research must

address the challenge of how to distinguish changes in power and delay characteristics due to

process variation, which is increasing with the improvement in transistor technology, from that

caused by a Trojan. The following section describes several one-time methods.

2.2.1.1 Trojan Activation

Given the size and complexity of modern ICs, exhaustive verification is not feasible. For

instance, a circuit that has n-inputs and m-stages requires 2n + m test vectors to conduct an

exhaustive test. Attackers exploit this reality by designing Trojans that only activate under

rare events that won’t be tested during verification. Trojan activation research strives to

improve this scenario by analyzing circuit structure to determine ideal Trojan locations and

then developing methods to active these regions using either non-invasive test vector generation

or Design-for-Test (DFT) strategies.

Controllability is the ease of which a primary input can manipulate the input of a specific

www.manaraa.com

11

node and observability is the likelihood that the output of a specific node will have an effect

on a primary output. Wolff et al. address Trojans that are triggered with nets that have

low controllability and payloads with low observability [71]. Regions in a circuit that fit this

profile are targeted as possible Trojan locations. A vector set is generated that is designed

to activate these target regions and is augmented with the traditional set of Automatic Test

Pattern Generation (ATPG) vectors used to verify the chip.

Banga and Hsiao developed a Trojan activation technique optimized for transient power

analysis [10, 11, 12]. Their “sustained vector technique” consisted of vector sets that increased

switching in a specific area of the chip while decreasing switching in the rest of the chip

to magnify that area’s power profile. If a Trojan was detected, then that region was further

analyzed to isolate the Trojan’s location. In another study, Banga and Hsiao introduced a DFT

approach to Trojan activation known as VITAMIN (Voltage Inversion Technique to Ascertain

Malicious Insertion in ICs) [13]. This technique switches the power and ground on certain gates

to transform rare events into fairly common events. For instance, a large AND gate producing

a high logic-level is a rare event but if the power connections are inverted, transforming the

AND gate to a NAND gate, it becomes a common event. They combine VITAMIN with their

sustained vector technique to achieve greater Trojan detection performance.

In [14], Banga and Hsiao concentrated on detecting Trojans embedded in third-party In-

tellectual Property (3PIPs). They define a four-step process that combines Trojan activation

analysis and equivalence checking to produce isolated regions in the design that are probable

to contain a Trojan. Zhang and Tehranipoor proposed a similar approach to 3PIP hardware

Trojan detection in which suspicious signals, that might be associated with a hardware Trojan,

were identified using coverage analysis [73]. The suspicious signal list was reduced using re-

dundant circuit removal algorithms. They utilized sequential ATPG to activate the suspicious

signals and compared the actual output with the expected output, searching for a mismatch

that might indicate the activation of a Trojan. Their approach was validated using the trust

benchmarks from Trust-Hub [2]

Salmani, Tehranipoor, and Plusquellic observed that Trojans are typically triggered on nets

www.manaraa.com

12

that have a low switching probability [60, 61]. To accelerate the activation of these nets, manual

switching circuitry was inserted in the chip. A switching probability threshold was defined and

manual switching circuitry was added to any net under this specified threshold allowing the

designer to trade decreased verification time for increased overhead.

Chakraborty et al. proposed a statistical approach to test pattern generation called MERO

(Multiple Excitation of Rare Occurence) [20]. This method creates a minimal set of vectors

that guarantee the excitation of nodes under a specified switching probability threshold a spec-

ified number of times. Analysis shows this approach can achieve comparable Trojan detection

coverage as other methods with a significantly reduced set of test vectors decreasing activation

time.

Jha and Jha used a randomization-based statistical approach to determine if a chip is

equivalent to its design and free of hardware Trojans [31]. The algorithm outputs a confidence

level that indicates the likelihood of a Trojan-free circuit. This confidence level improves the

longer the algorithm runs, allowing the designer to choose between accuracy and verification

run-time.

2.2.1.2 Side-Channel Analysis

Even after a Trojan is activated, Trojan detection is not a trivial task. A circuit abnormality

must be observed to confirm the existence of a Trojan. Two leading methods of Trojan detection

are logic-based testing and side-channel analysis [21]. Logic-based testing is the traditional

method of IC verification and offers several advantages over side-channel analysis. The correct

logic output of a circuit can be determined from the high-level circuit specification. This allows

for the detection of Trojans which are inserted in the design stages as well as the manufacturing

stages of IC development. Also, valid logic behavior is unambiguous so false positives are not an

issue. However, the major disadvantage of logic-based testing is that it can only detect Trojans

which affect the logic output of the circuit. The analysis of side-channels, like power and delay,

is theoretically capable of detecting any Trojan that modifies the circuit layout, but there are

some real-world practicality issues with this approach. The side-channel profile of a chip can’t

www.manaraa.com

13

be accurately determined from a high-level specification. It must be measured from a set of

“golden” ICs which are destructively verified and used to authenticate the remaining chips.

This only allows for the detection of Trojans which were inserted during the manufacturing

stages of IC development. Another major issue is that manufacturing process variation caused

by random dopant fluctuations, line edge and line width roughness, etc. is so significant at

small transistor feature sizes, that it can mask the presence of a Trojan [50, 59]. Currently,

hardware Trojans are only detectable if they’re large enough to represent approximately .01% of

overall chip [5, 49]. A significant research effort has focused on reducing the effects of process

variation and improving hardware Trojan detection resolution. The following is a survey of

these techniques.

Agrawal et al. first proposed the use of side-channels like power, temperature, and electro-

magnetic radiation to create a unique fingerprint of an IC [5]. Transient power measurements

were taken from a set of golden chips and averaged together to establish a baseline. The golden

chips were then destructively reverse-engineered and compared to their layout geometries to

manually verify their integrity. Then the rest of the chips were measured and compared with

the baseline measurement using statistical analysis to determine if the circuit was modified.

Results showed Trojans that were 3-4 orders of magnitude smaller than the original circuit

were distinguishable from 7.5% process variation.

Wang et al. proposed a DFT approach to side-channel analysis in which the IC was divided

into four separate power grids, effectively reducing the Trojan to circuit size ratio [69]. Current

measurements were taken from each power port over a period of time to get an accumulative

charge versus time profile. If the accumulative charge exceeded a threshold, which included

worst case process variation, then a Trojan was detected. Similarly, Rad et al. used nine power

grids to further reduce the Trojan to circuit size ratio and analyze the transient current profile

of the chip [56]. A calibration method was introduced and applied to each power port on every

chip tested to mitigate process variation. In [55], Rad et al. test the sensitivity of this approach

using a simulation that models TSMC’s .18 µm process technology. Several Trojans, consisting

of 2-input NAND gates, were embedded into the c499 ISCAS’85 benchmark. At a 10 dB signal-

www.manaraa.com

14

to-noise ratio, a Trojan consisting of 4 NAND gates was detectable if input stimulus generated

switching in the Trojan circuit. This was decreased to 7 gates when stimulus didn’t generate

Trojan activation. In [3], Rad et al. tested their approach on 45 custom test ICs created using

a 65nm fabrication process. A Trojan was represented by a transistor that leaked a specified

amount of current to the power grid and could be located at any one of the 4,000 test locations

on the chip. The results revealed that their calibration and current analysis technique were

very effective in mitigating the effects of environmental and process variation allowing for the

detection of Trojans that leaked as little as 8 µA of current.

In [40], Li and Lach proposed the use of combinational logic delay paths to characterize a

circuit. They introduced a DFT approach in which an efficient delay measurement circuit was

added to several combinational logic paths on the chip. Since propagation delay is dependent

on temperature; a ring oscillator-based temperature sensor was incorporated into the design to

calibrate measurements. Rai and Lach extended this work, evaluating the performance of this

approach using a simulation of modern process variation [57]. Their results proved this method

was effective in distinguishing hardware Trojans from modern process variation but they also

acknowledged this method was limited by the resolution of the clock generator (which drives

the delay measurement circuit) skew-step and the number of feasible delay measurements.

In a similar work, Rajendran et al. utilized embedded ring oscillators in combinational

logic to characterize delay paths on the chip [58]. Ring oscillators were created using existing

circuit logic, a mux, and, possibly, an inverter depending on the type of gates in the logic path.

An algorithm was defined that embedded ring oscillators through all gates on the chip in an

efficient manner. This technique was applied to the ISCAS’85 benchmarks and results showed

it induced moderate area cost while securing all gates on the chip and a test cost that scales

linearly with the number gates. Jin and Makris used a similar delay-based Trojan detection

method [33]. They gathered high-dimensional path delay information from the IC and then

converted it to a lower-dimensional space to generate a unique fingerprint for comparison. A

statistical method was implemented to reduce the effects of process variation.

Potkonjak et al. used both delay and static power side-channels along with gate-level

www.manaraa.com

15

characterization techniques to detect hardware Trojans [54]. Linear programming and singular-

value decomposition were used to detect inconsistent gate characteristics indicating the presence

of a Trojan. Alkabani and Koushanfar implemented a very similar approach in [6] using multiple

consistency checking.

In [34], Jin and Makris addressed a scenario in which hardware Trojans were embedded

in a wireless cryptographic IC and attempted to leak the secret key to an adversary through

the manipulation of transmission parameters. They observed that the attacker must impose a

specific structure on the transmission parameters in order to leak the key. A statistical method

was developed to recognize the specific key pattern in the transmission signal parameters.

Test Trojans were created that leaked the cryptographic key via amplitude and frequency

exploitations. Results confirmed this method’s validity in detecting the leakage of a secret key

through the manipulation of wireless transmission parameters.

Chakraborty et al. exploited the relationship between transient current and maximum

operating frequency to reduce the effects of process variation [49]. This method was combined

with their statistical approach to Trojan activation, MERO, to create a comprehensive Trojan

detection scheme. Simulation showed a detection resolution of .04% with 20% process variation.

These results were verified on a FPGA platform.

2.2.2 Persistent Methods

Given the limitations of one-time hardware trust verification methods, it’s necessary to

augment these methods with the persistent verification of hardware trust. These methods

continually search for abnormal run-time behavior which might indicate the activation of a

hardware Trojan. Similar to one-time methods, persistent methods address a specific architec-

ture and/or class of Trojans.

The large transistor densities of modern ICs allows for the integration of an entire system on

a single chip, a paradigm known as System-on-Chip (SoC). A typical SoC architecture contains

several hardware modules (also referred to as hardware cores) connected by a central bus.

In [36], Kim et al. addressed a scenario in which one of the hardware cores in a SoC contained

www.manaraa.com

16

a hardware Trojan designed to snoop the system bus and degrade bus performance. They

proposed modifications to typical SoC bus components like the address decoder, bus matrix,

and arbiter to detect these attacks during run-time and mitigate their effect on the system. In

a similar work, Huffmire et al. addressed a situation in which both secure and insecure data,

commonly referred to as black and red data respectively, are present in a SoC and must be

completely isolated from each other [26]. They designed a compiler that translated a high-

level security policy into a reference monitor which was integrated into the SoC bus arbiter to

maintain complete isolation of the two data types.

Bloom, Narahari, and Simha proposed a hardware/software approach to persistent hard-

ware Trojan detection in a general computing system [17]. This scheme targets a hardware

Trojan that implements a denial-of-service attack on the processor or a prediction, delay, or

replay attack on main memory. An off-chip “hardware guard” was placed between the pro-

cessor and main memory. The operating system was modified to be guard-aware, perform-

ing pseudo-random liveness checks and periodic memory protection checks with the hardware

guard. Results showed this approach was effective in detecting the targeted set of hardware

Trojans.

McIntyre et al. focused on persistent detection of hardware Trojans in a multi-core sys-

tem [46]. They observed that it was very unlikely that two variant, but functionally equivalent,

subtasks would activate the same Trojan in two different processing elements (PEs). Using this

observation and the inherent redundancy of multi-core systems, they created a task scheduler

that sent variant, but functionally equivalent, subtasks to different PEs. A mismatch in PE

outputs indicated the activation of a Trojan. In this case, subtasks were further propagated to

determine which PE produced the error and contained the hardware Trojan.

www.manaraa.com

17

CHAPTER 3. APPROACH

For an IC to be trusted, either the supply chain from which it was produced must be trusted

or the IC must be verifiably trustworthy [68]. While a trusted domestic IC supply chain exists

with entities such as the Trusted Foundry Program [64], it doesn’t have the large volume

capabilities or leading-edge technology of the global supply chain. In this work, we propose

using a few trusted ICs to persistently verify the trustworthiness of several untrusted digital

ICs. As discussed in [29], the trustworthiness of an IC is “the degree to which the security

behavior of the component is demonstrably compliant with its stated functionality.” In our

approach, we persistently monitor the IO of untrusted digital ICs to verify they are compliant

with the original specification.

System integrators have a unique knowledge of their systems and can leverage this knowl-

edge to place constraints on the IO signals of untrusted ICs to prove, with a certain level of

confidence, they comply with their original specification. These constraints must be protocol-

independent since a typical system will contain many ICs implementing several different pro-

tocols. To achieve this property, each digital signal is characterized as a series of consecutive

pulses, also referred to as a pulse train. The pulse train is fully described by specifying the

logic-level/width of each pulse and the pulse order. We call this description of a pulse train

a digital signal signature. The following sections define a system monitor which searches for

digital signal signatures in the IO of untrusted ICs to persistently verify their operation and

alert the system if an abnormality is detected.

A digital signal signature taxonomy is shown in Fig. 3.1. A signature has a type that can

be either valid or invalid. The discovery of valid signatures in a digital signal indicates the

monitored device is functioning correctly to a certain degree of confidence. The discovery of

www.manaraa.com

18

Digital Signal

Signature

Type

Valid Invalid

Start Event

Signal

Transition

Signature -

based
Time-based

Figure 3.1: Digital signal signature taxonomy

invalid signatures in a digital signal proves the monitored device contains malicious behavior.

A digital signal signature also has a start event which marks the beginning of the signature

in the digital signal. The start event can be a signal transition, time interval, or even another

signature. A signal transition start event simply enables the associated signature detector

when a high-to-low and/or low-to-high signal transition is detected. For instance, the first

high-to-low transition in a RS232 signal indicates the start of a packet. A timer-based start

event enables the signature detector after a set number of clock cycles and is useful for periodic

signatures. For some complex signals a simple transition or time-based start event may not

be sufficient. In these cases, a signature can be specified as a start condition. The start event

monitor continually searches for the signature start event and resets the signature detector once

it’s discovered. This will be discussed further in section 3.1.3.

3.1 System Monitor Design

Figure 3.2 shows a top-level diagram of the trusted system monitor. Several signals from

untrusted ICs are simultaneously monitored to ensure the system is operating correctly. Each

signal has an associated Digital Signal Monitor (DSM) that continually searches for a set of

signatures within the signal. If a signal abnormality is detected, an alert signal along with the

offending signal index is reported to the system.

www.manaraa.com

19

System Monitor

Signal Abnormality

Detected

DSM_1

Encoder
Signal Index

Signal 1

DSM_2
Signal 2

DSM_N

Signal N

Figure 3.2: Top-level design of the trusted system monitor which is composed of several Digital

Signal Monitors (DSMs) that each filter a digital signal of an untrusted IC for a set of signatures

3.1.1 Digital Signal Monitors (DSMs)

A digital signal monitor filters a signal for a set of signatures. Each signature has a cor-

responding hardware module called a Signature Detector (SD). The SD searches for a specific

digital signal signature. Each SD has an associated Start Event Monitor (SEM) which activates

the SD by releasing the reset signal once the start event is discovered. All SDs that have the

same start event share the same SEM.

An example digital signal monitor architecture is shown in Fig. 3.3. Blocks highlighted in

blue, green, and red represent three typical interconnections of the DSM architecture. The

blocks highlighted in blue show three valid signature detectors that have the same signal tran-

sition start event and are connected to the same start event monitor. Once the start event is

discovered, the SEM activates the three SDs by releasing the reset signal. If one of the SDs

detects a valid signature then all SDs will be reset once the next signal transition start event

is detected. If all three SDs report a signature violation, then a signal abnormality is reported

www.manaraa.com

20

Digital Signal Monitor (DSM)

Start Event 1

Monitor

Valid

Signature 3

Monitor

violation

violation

violation

detection

detection

detection

reset

signal

reset

signal

reset

signal

violation

violation

detection

reset

signal

reset

signal

detection

violation

signal
Signal_In

Time-based

SEM

Signal

Transition

SEM

Valid

Signature

��������

Valid

Signature

Detector

Valid

Signature

��������

Valid

Signature

��������

Valid

Signature

��������

Signature -

based SEM

Invalid

Signature

��������

detection

Signal

Abnormality

Figure 3.3: Example digital signal monitor architecture. Blocks highlighted in blue, green, and

red represent three typical interconnections of the DSM architecture.

www.manaraa.com

21

� � � � � �� �

Reset

Pulse Constraint Failure

Assert

violation

signal

Reset

S0 S1 S3
Assert

detection

signal

S2 S4

Figure 3.4: Example signature detector FSM

to the system monitor. The blocks highlighted in green show another start event monitor and

associated signature detector. In this case, the SEM is time-based resetting the SD after a

specific number of clock cycles. The blocks highlighted in red show a valid SD and an invalid

SD connected to the same SEM. The detection of an invalid signature should assert the signal

abnormality signal. To achieve this functionality, the violation signal of the valid signature

block and the detection signal of the invalid signature block are OR’d together. If the valid

signature is detected and the invalid signature detector reports a violation the SDs are reset

when the next start event occurs.

3.1.2 Signature Detectors (SDs)

A unique signature detector is created for each signature to reduce overhead. The main

component of the signature detector is a Finite State Machine (FSM). Figure 3.4 shows an

example digital signal signature and the corresponding FSM. Each state of the FSM represents

a pulse constraint or series of pulse constraints in which the logic-level constraint is the same.

If the signal adheres to the pulse constraint(s) for a given state, the FSM transitions to the

next state and finally asserts the detection signal. If any pulse constraint is violated, the FSM

transitions to an error state in which the violation signal is asserted. The reset signal must be

asserted to transition back to the initial state.

www.manaraa.com

22

Signal_In

Signature
Detected

Register

Reset

(a) High-to-low transition

1

0

Signature
Detected

0

Reset

+
Register

Time

Delay

Register

>

(b) Time-based

Signal_In

Signature
Detected

Register
Reset

FSM

(c) Signature-based

S6

Pulse Constraint Failure
Pulse Constraint Failure

Reason: Pulse too Narrow

S0 S1 S2 S3 S4 S5

Pulse Constraint Failure
Reason: Pulse too Wide

Pulse Constraint Satisfied

Assert detection signal one cycle

(d) Example signature-based FSM

Figure 3.5: Start event monitor design

3.1.3 Start Event Monitors (SEMs)

Each signature has a start event that marks the beginning of the signature within a signal.

A start event is a change in signal state such as a high-to-low transition, a specified amount

of time, or a combination of the two. A start event monitor effectively controls its associated

signature detectors by resetting the SDs once a start event is discovered. It’s designed to

reset the SDs only if the signature detected signal is asserted. A low signature detected signal

indicates the SDs are actively searching for a signature or a signal abnormality was discovered,

neither of which warrants a reset. Note that the valid SDs are initialized to the Assert detection

signal state and invalid SDs are initialized to the Assert violation signal state to address the

startup case. Design details for the three types of SEMs are shown in Fig. 3.5.

The signal transition SEM registers the monitored signal and compares it to the unregistered

signal to detect a change in signal state. A high-to-low signal transition SEM is shown in

Fig. 3.5a. To create a low-to-high SEM, the inverter is simply moved to the registered signal.

www.manaraa.com

23

A SEM can also be designed to detect both transitions by removing the inverter and XOR’ing

the unregisterd and registered signals.

Figure 3.5b shows the design of a time-based SEM. This start event monitor resets its

associated SDs after a certain number of clock cycles, independent of signal state. When the

signature detected signal is asserted, an accumulator is enabled. The output of the accumulator

is compared with a register value that corresponds to the time delay. Once the output of the

accumulator is greater than the value of the time delay register, the SDs are reset.

When a start event cannot be uniquely identified by a signal transition or time delay, a

signature-based start event monitor is used. Figure 3.5c shows the design of a signature-base

SEM. A FSM continually searches the monitored signal for the start event signature. When

the signature is discovered, the FSM outputs a one cycle pulse which will reset the associated

SDs if the signature detected signal is high.

An example signature-based FSM is shown in Fig. 3.5d. States S1, S4 and S6 all contain

equivalent pulse constraints and states S1 and S5 also share the same pulse constraint. If the

pulse constraint of a given state is satisfied the FSM advances to the next state. If the pulse

constraint in state S6 is satisfied, the FSM will output a one cycle pulse to the SEM indicating

the start event was detected. The FSM will then transition to state S1 since states S0 and S6

have equivalent pulse constraints. If the pulse constraint of a given state is violated the FSM

transitions to an earlier state rather than an error state. For instance, if the pulse constraint

in state S6 is violated because the signal pulse is too narrow the FSM will transition back to

S0. If the S6 pulse constraint is violated because the signal pulse is too wide the FSM will

transition to S2 since states S4 and S5 are equivalent to states S0 and S1 respectively.

3.2 System Monitor Generation

While all digital signal monitors utilize a similar structure, each is specific to a set of

signatures. In a real system this could result in hundreds of unique DSMs. Manually creating a

system monitor containing hundreds of DSMs would be very tedious and error-prone. A system

monitor generator tool is needed to automate the design process and ease the burden on the

www.manaraa.com

24

system integrator. This tool should allow for the specification of digital signal signatures in a

high level language and then translate this specification into HDL for the monitor design.

In this work we create a prototype System Monitor Generator (SMG) which is modeled

after a similar design automation tool, Xilinx’s CORE Generator. Xilinx maintains a set of

hardware cores optimized for their FPGAs. Each hardware core is highly parameterized which

allows the designer to customize the core for a specific application. CORE Generator aids the

designer in modifying the appropriate parameters to achieve the desired functionality. The

designer can customize a core using the CORE Generator GUI or a set of commands which the

tool reads from a batch (.xco) file [72]. We developed a signature specification language, based

on the CORE Generator batch file command syntax, to specify a set of digital signal signatures

which implicitly specifies the customization parameters for a set of DSMs to create a system

monitor. Our SMG tool translates a batch file containing a set of digital signal signatures into

a HDL representation of the system monitor.

3.2.1 Signature Specification

A description of several common batch file commands is shown in Fig. 3.6a and an example

batch file that specifies a customized distributed arithmetic FIR filter is shown in Fig. 3.6b.

We leverage the CSET and GENERATE commands for our signature specification language.

The CSET command is used to specify core properties. We use this command to set properties

of a digital signal signature which will be described further in the following sections. The

GENERATE command starts the customization process based on the parameters specified

earlier in the file. We use this command to instruct the SMG to generate the HDL for the

system monitor.

The CSET command typically equates a signal value to a single property. To reduce the

space needed to specify several signatures, we condensed the typical CSET command syntax.

We define two major properties, start event and constraint (Fig. 3.7), to specify a set of digital

signal signatures and create a customized system monitor. Each property takes multiple values

and implicitly defines several other properties.

www.manaraa.com

25

Command Arguments Function

CSET <core_property=value> Sets a core property value.

⁞ ⁞ ⁞

SET <global_property=value>

<project_property=value>
Sets a CORE Generator

TM

property value.

Elaborates the indicated

command file.

N/AGENERATE

SELECT <core_name>

<architecture> <vendor>

Selects the indicated core.

(a) Common batch file commands. Commands highlighted in blue were used in our sig-
nature specification language.

SET BusFormat = BusFormatAngleBracket

SET OutputProducts = ImpNetlist BmmFile

SELECT Distributed_Arithmetic_FIR_Filter Virtex Xilinx,_Inc. 7.0

CSET impulse_response = Symmetric

CSET coefficient_file = C:\coe_files\da_fir.coe

GENERATE

 ⁞

 ⁞

(b) Example batch file for a distributed arithmetic FIR filter

Figure 3.6: CORE Generator batch mode (source [72])

The start event property defines a signature start event. The signature type and signature

values link the start event to the corresponding signature. If the signature doesn’t exist

it is implicitly declared. The signal value specifies the name of the signal being monitored.

The event type denotes the type of start event using one of the three keywords: transition,

time-based, or signature-based. The event type value indicates the specific start event value.

For instance, the event type value for a transition start event is expressed using one of the three

keywords: falling edge, rising edge, or falling and rising edge.

The constraint property defines a pulse constraint for a signature. Similar to the start event

property, the signature type and signature # values indicate the corresponding signature and

will implicitly declare a signature if it doesn’t already exist. The constraint # is a value that

indicates the relative ordering of the pulse constraints associated with a signature. The signal

www.manaraa.com

26

CSET <signature type>_signature_<signature #>_start_event

 = <signal> <event type> <value>

 signature type: valid | invalid

 signature #: positive integer representing the signature index

 signal: name of the signal being monitored

 event type: transition | time-based | signature-based

 transition value: falling_edge | rising_edge | falling_and_rising_edge

 time-based value: positive integer representing the time delay in clock cycles

 signature-based value: positive integer representing the index of a defined signature

(a) start event property definition

CSET <signature type>_signature_<signature #>_constraint_<constraint #>

 = <signal> <logic_level> <<width> | <min_width> <max_width>>

 signature type: valid | invalid

 signature #: positive integer representing the signature index

 constraint #: positive integer representing the constraint index

 signal: name of the signal being monitored

 logic_level: low | high | don't_care

 width: positive integer representing the width of the pulse

 min_width/max_width: positive integer representing the min & max widths of the pulse

(b) constraint property definition

Figure 3.7: Digital signal signature properties and values

value denotes the name of the signal being monitored. The logic level value specifies the logic

level constraint of a pulse and is expressed by one of three keywords: low, high, or don’t care.

The width, min width, and max width values define the timing constraint of a pulse expressed

in the number of clock cycles. If the exact timing constraint can’t be determined, a minimum

and maximum constraint must be specified.

3.2.2 SMG Prototype

The SMG is responsible for translating the signatures specification into HDL files. Figure 3.8

shows a high-level overview of our system monitor generator prototype. The SMG reads a

signature spec.xco file and translates this high level specification in several VHDL files. The top-

www.manaraa.com

27

Digital Signal

Signatures

Signature_Spec.xco

SEM1.vhd
...

SEMx.vhd

SD1.vhd
...

SDx.vhd

DSMx.vhd

...

DSM1.vhd

system_monitor.vhd

System Monitor Generator Prototype

FSM Class

SD Class

DSM Class

SMG Class

SigSEM
Class

SEM Class

TransSEM
Class

TimeSEM
Class

Figure 3.8: Overview of the system monitor generator prototype functionality

level system monitor file is system monitor.vhd. This file instantiates and interconnects several

digital signal monitors which are expressed in their respective DSMx.vhd files. Each DSMx.vhd

file instantiates and interconnects several start event monitors and signature detectors expressed

in their respective SEMx.vhd and SDx.vhd files. These files contain the descriptions necessary

to develop customized hardware that monitors a set of digital signals for their corresponding

signatures expressed in the signature spec.xco file.

Our SMG prototype was developed using an object-oriented structure in C++. The pro-

gram was divided into several classes, shown in Fig. 3.8, to manage code complexity and

maintain organization. The SMG class is responsible for reading signature properties from

the signatures specification file and writing the system monitor.vhd file. When a signature

www.manaraa.com

28

property is read it’s sent to the appropriate DSM object. If an object doesn’t exist for that

signal, a new DSM object is instantiated. The DSM class interprets a set of received signature

properties for a given signal and writes the corresponding DSMx.vhd file. Each property is

transferred to the appropriate SEM or SD object. If an object doesn’t exist for that signature

a new object is instantiated. The SD class interprets a set of constraint properties for a given

signature and writes the associated SDx.vhd file. Since the main component of a signature

detector is a FSM and the signature-based SEM also implements a finite state machine, a FSM

base class was created. This class provides the facilities to translate constraint properties into

FSM states. The SEM class is a base class for the three types of start event monitor classes,

TransSEM, TimeSEM, and SigSEM. It provides common functionality of a start event monitor

to the derived SEM classes. Each derived SEM class interprets a start event property and

writes the appropriate SEMx.vhd file. Since the main component of the signature-based SEM

is a FSM, the SigSEM class also inherits the FSM class.

3.3 System Monitor Realization

The physical hardware for a system monitor must have a high pin count to monitor sig-

nals from several ICs, capable of adequately sampling multiple digital signals simultaneously,

and have the area resources necessary to support many digital signal monitors. The inher-

ent parallelism and performance capabilities of a (semi-)custom hardware solution is ideal for

this type of application. There are several hardware options to choose from including a fully

customized hardware solution, standard cell Application Specific Integrated Circuits (ASICs),

and Field-Programmable Gate Arrays (FPGAs). A fully customized hardware solution offers

the best performance but the design-time and non-reoccurring engineering (NRE) cost makes

this option not feasible unless the system is produced in extremely high volumes [38]. In most

situations, it will be more feasible to implement the system monitor in an ASIC or FPGA.

Choosing the best option will depend on the type of system.

www.manaraa.com

29

3.3.1 Performance/Cost Considerations

An ASIC has a significantly higher Non-Recurring Engineering (NRE) cost and development

time but is also capable of higher operating speeds, higher area density, and lower power

consumption. An ASIC might be necessary for systems in which high frequency signals are

monitored, the set of signature is very large, or low power is a primary concern. Also, if

the system is produced in high volumes such that the higher NRE cost is offset by the lower

cost per unit, it might be the more economically sound option. FPGAs have a higher cost

per unit and lower performance but have a significantly faster development cycle. Also the

reconfigurability of an FPGA could be a particularly useful feature in multifunction systems.

A custom system monitor configuration can be designed for each function of the system. If the

higher performance of an ASIC is not required, an FPGA will be the better choice as it will

most likely be cheaper, is more flexible, and will allow for a faster time to market.

3.3.2 Secure Process Flow

Another consideration is the security of the ASIC and FPGA development processes. The

system monitor must be developed using a secure process flow. Currently the domestic IC

supply chain primarily supports ASIC development, offering several options for the implemen-

tation of an ASIC system monitor. Leading FPGA companies, like Xilinx and Altera, use

the fabless business model and rely on offshore companies for fabrication. However, FPGAs

are inherently less susceptible to a hardware Trojan attack since the hardware configuration

is not known during the development cycle. Also, recently FPGA startup company Achronix

announced it has partnered with Intel [45] and will be the first commercial FPGA company

with a domestic end-to-end supply chain [44]. Their new high-end Speedster22i FPGA, built

using Intel’s 22nm 3-D Tri-Gate transistor technology, would be an ideal hardware device for

a system monitor requiring this level of performance.

www.manaraa.com

30

CHAPTER 4. EXPERIMENTAL ANALYSIS

In this section we conduct experiments that demonstrate the security and overhead of our

persistent monitoring framework. We examine a situation in which the TXD signal of an

RS232 core embedded in an untrusted IC is monitored to partially verify the functionality

of the circuit. Ten hardware Trojan benchmarks are embedded into the RS232 core, each

with a different payload. Four system monitors are created, each with a unique signature

specification, to detect a Trojan activation. The effectiveness and overhead of each system

monitor is evaluated.

This experimental setup is consistent with a situation in which a hardware Trojan is em-

bedded into a RS232 core during the IC development cycle to modify the circuit’s functionality

or transmit information from the chip. The attacker could infiltrate any stage of the IC de-

velopment cycle to embed the hardware Trojan – including the third-party company which

developed the RS232 core, the EDA toolset company that translated the RS232 core into low

level design files or the foundry where the IC was fabricated. We address forty different sce-

narios in which the system integrator, who is implementing the IC in his/her system, has one

of four levels of knowledge regarding the functionality of the RS232 core which contains one of

ten possible hardware Trojans.

4.1 Experimental Setup

Figure 4.1 shows the experimental setup consisting of a RS232 core transmitting ten packets

which are sent in a burst. The packet structure includes one start bit, eight data bit in which

the least significant bit is transmitted first, and one stop bit. The baud rate is 9600 which

corresponds to a single pulse width of 104320ns.

www.manaraa.com

31

RS232_txd Packet 8 Packet 9 Packet 10Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7Start Bit Stop Bit

Figure 4.1: Experimental setup consisting of an RS232 core embedded in an untrusted IC that

transmits ten packets

4.1.1 Signature Specifications

The system integrator must design signature specifications based on information known

about the system operation prior to runtime, which we refer to as static system knowledge.

The detail of this static system knowledge is dependent on the type of system and type of

ICs which are monitored. We have developed a flexible persistent monitoring framework that

allows for signature specifications of varying detail. Utilizing this functionality, we develop

four signature specifications SS1, SS2, SS3, and SS4 of varying resolution. SS1 has a minimal

amount of detail consistent with a situation in which the system integrator has a limited static

knowledge of the digital signal. Signature specifications SS2 and SS3 have a moderate amount

of detail. SS4 contains the maximum amount of detail, consistent with a situation in which

the system integrator has complete knowledge of the signal prior to runtime. Figure 4.2 shows

a visual representation of each signature specification. Portions of the signal highlighted in

red are constrained by the signature specification. A hardware Trojan payload that modifies

this portion of the signal will be detected by the system monitor implementing this signature

specification.

SS1, shown in Fig. 4.2a, contains the least amount of detail. It places a minimum and

maximum width constraint on each pulse but doesn’t require a specific logic level. The minimum

pulse width constraint corresponds to the width of a signal pulse at a baud rate of 9600. The

maximum pulse width constraint corresponds to nine consecutive single pulse widths that could

occur either by a data value of 0x00 following the start bit or a data value of 0xFF followed by

the stop bit. This will detect an abnormally small or large pulse width but will not maintain a

strict packet structure. Note this does impose a loose constraint on time delay between packets.

www.manaraa.com

32

RS232_txd 0x88 0x79 0xFF0x00 0xE2 0xD3 0xC4 0xB5 0xA6 0x97

Start Bit Stop Bit

Detected

Abnormality

Undetected
Abnormality

(a) SS1: A pulse must between one and nine standard pulse widths

RS232_txd 0x88 0x79 0xFF0x00 0xE2 0xD3 0xC4 0xB5 0xA6 0x97

Start Bit Stop Bit

Detected
Abnormality

Undetected
Abnormality

(b) SS2: A packet contains 10 pulses. The start bit must be low and the stop bit must be high. The
data pulses can be high or low but must be a standard pulse width.

RS232_txd 0x88 0x79 0xFF0x00 0xE2 0xD3 0xC4 0xB5 0xA6 0x97

Start Bit Stop Bit

Detected
Abnormality

Undetected
Abnormalities

0x88 0xC4 0xD30xFF 0xA6 0xB5 0xE2 0xFF 0x97 0x79

(c) SS3: Each packet must be one of ten allowed packets.

RS232_txd 0x88 0x79 0xFF0x00 0xE2 0xD3 0xC4 0xB5 0xA6 0x97

Start Bit Stop Bit

Detected
Abnormalities

0x88 0xC4 0xD30xFF 0xA6 0xB5 0xE2 0xFF 0x97 0x79

(d) SS4: The exact packet order and inter-packet delay is also constrained.

Figure 4.2: RS232 signatures specifications. Portions of the signal highlighted in red are

constrained by the specification.

www.manaraa.com

33

SS2, shown in Fig. 4.2b, adds more detail to SS1 by including a signature that specifies the

RS232 packet structure. This includes a single pulse start bit that is constrained to a low logic

level, followed by eight data bits that can be either a high or low logic level but are constrained

to a single pulse width, and then a single pulse stop bit that’s constrained to a high logic level.

In this specification, the signal must be adhere to the RS232 packet structure but the data

content isn’t constrained.

SS3, shown in Fig. 4.2c, assumes a situation in which the system integrator knows the valid

data content of all transmitted packets but doesn’t known that order in which they’re trans-

mitted. This signature specification adds more detail to SS2 by specifying a unique signature

for each packet in which the logic level constraint for each data bit is defined.

SS4, shown in Fig. 4.2d, takes this one step further by defining the order in which the

packets will be transmitted. This assumes the system integrator has complete knowledge of

the signal prior to runtime. Any Trojan payload that modifies the TXD signal will be detected.

4.1.2 Benchmarks

Ten trust benchmarks were used to evaluate the effectiveness of the four RS232 specifi-

cations. Each benchmark consists of a RS232 core which contains an embedded hardware

Trojan. Six of the benchmark Trojans modify the functionality of the RS232 core while the

other four transmit secret information. The hardware Trojans are lightweight and would likely

go unnoticed by the conventional one-time implementable verification methods.

4.1.2.1 Modify Functionality Benchmarks

Six of the trust benchmarks modify the functionality of the circuit. These benchmarks

were obtained from Trust Hub, a website developed by leading hardware trust researchers to

reinforce continuity in the hardware security and trust community [2]. Part of Trust Hub’s

mission is to establish a set of trust benchmarks. Currently, 22 benchmarks have been created

each of which consists of a RS232 core with an embedded hardware Trojan. Each Trojan has a

unique trigger and payload combination. The majority of the benchmarks include Trojans that

www.manaraa.com

34

are difficult to activate requiring the assertion of an internal set of signals. These benchmarks

are designed to test Trojan activation methods. Six of the benchmarks include Trojans that are

easily activated by an input sequence. These benchmarks are designed for detection methods

that focus on detecting the malicious payload rather than activating the Trojan. Since our

method is persistent, it’s irrelevant how the Trojan is activated. We are interested in the

ability to detect a Trojan Payload. We use these six benchmarks to evaluate our signature

specifications.

4.1.2.2 Transmit Information Benchmarks

The remaining four benchmarks, RS232-EXTRA-BAND, RS232-HIGHER-BAND, RS232-

VAR-DELAY, and RS232-VAR-WIDTH, transmit secret information from the circuit. We

created these benchmarks using our own experience in designing hardware Trojan prototypes

(see Appendix A) and hardware Trojan design case studies [15, 32]. These benchmarks are

triggered after a set amount of time and leak information in a covert manner that will not

affect the functionality of the circuit. This type of hardware Trojan would be particularly

difficult to detect during IC verification and would likely go unnoticed.

The RS232-EXTRA-BAND benchmark simply waits until the RS232 core is not transmit-

ting a packet and then leaks the information using the extra bandwidth that’s not utilized by

the main system. The RS232-HIGHER-BAND benchmark embeds a higher bandwidth RS232

signal within a lower bandwidth RS232 signal as described in [15]. When the baud rate is 9600

and the Trojan trigger counter has expired, the RS232 core is switched to a baud rate of 115200

and leaks information in a manner in which the core appears to still be transmitting data at

a baud rate of 9600. The RS232-VAR-DELAY benchmark uses inter-packet delay to leak in-

formation. Once the Trojan is triggered it waits for a scenario in which inter-packet delay is

constant. It then starts leaking information by doubling the inter-packet delay when leaking

a bit value of 1 and leaving the delay unmodified when leaking a bit value of 0. The RS232-

VAR-WIDTH benchmark adjusts the width of a single pulse to leak information. The first

three benchmarks are consistent with a situation in which the attacker has access or can gain

www.manaraa.com

35

access to a system that’s connected via RS232 to the system being monitored. This benchmark

assumes the attacker has access to the physical RS232 wire. In this case, the Trojan payload

can be more subtle. Once this hardware Trojan is activated, an extra cycle is added to any

single pulse to leak a bit value of 1 and left unmodified to leak a bit value of 0.

4.2 Results

Each signature specification was transformed into the HDL for a system monitor using

our prototype system monitor generator. This HDL was then used to evaluate the overhead

induced by each signature specification as well as the effectiveness of each system monitor in

detecting hardware Trojan activations in the trust benchmarks.

4.2.1 Overhead

As mentioned in Section 3.3, FPGAs are an ideal hardware platform for implementing a

system monitor. We use three FPGAs, the Xilinx XC3S100E, XC4VFX40, and XC5VFX70T,

to evaluate the overhead associated with each signature specification. These FPGAs represent

three distinct performance levels. The XC3S100E is a low performance/economical FPGA, the

XC4VFX40 is a moderate performance/moderately priced FPGA, and the XC5VFX70T is a

high performance/high cost FPGA. Bitstreams were generated for each FPGA using the Xilinx

ISE toolset. The results are shown in Table 4.1.

The area overhead induced by each signature specification, in terms of registers and LookUp

Tables (LUTs), for the XC3S100E FPGA is shown in columns 2 and 3 of table 4.1. As expected,

the more detailed signature specifications induce more area resources. Since the order of the

RS232 packets are not preserved in SS3, the system monitor must search for each packet

in parallel which means ten separate signature detectors are needed. This is why the area

overhead is considerably higher for SS3. In SS4, the packet order is fixed which means only

a single signature detector is needed to search for all ten packets. Even though SS4 contains

significantly more detail that SS1 and SS2, it doesn’t use that many more area resources.

The absolute flip flop and LUT utilization is only shown for the XC3S100E FPGA but it’s

www.manaraa.com

36

Table 4.1: Overhead of the system monitor created for each signature specification

Signature

Specification

XC3S100E XC4VFX40 XC5VFX70T

Regs LUTs Delay Delay Delay

SS1 20 (1%) 39 (2%) 5.966ns 3.444ns 2.714ns

SS2 57 (2%) 200 (10%) 7.090ns 3.683ns 2.869ns

SS3 237 (12%) 894 (46%) 6.226ns 3.478ns 2.685ns

SS4 87 (4%) 280 (14%) 7.689ns 4.037ns 3.139ns

approximately the same for the other two FPGAs. Note however that the other two FPGAs

contain considerably more area resources, so the signatures specifications induce a much smaller

relative utilization on these FPGAs.

Columns 4-6 of table 4.1 show the delay overhead induced by each signature specification.

As expected, SS1 induces the smallest delay as it contains the least amount of detail and

monitoring hardware. SS4 has the largest delay as it contains the most detail and most involved

signature detector. An interesting observation is that SS2 induces more delay than SS3 even

though SS3 is a more detailed signature specification. This is because extra logic is needed

in the SS2 signature detector, to support the don’t care logic level pulse constraints, which

increases the circuit’s critical path. Note that the system monitor delay is very technology

dependent. A system monitor implemented on the XC5VFX70T FPGA is approximately twice

as fast as a system monitor implemented on the XC3S100E FPGA. This should be considered

when selecting a device for a system monitor in which high frequency signals are monitored.

The system monitor must be clocked at least twice as fast of the maximum frequency of the

digital signals that it’s monitoring (the Nyquist rate) to adequately sample it.

4.2.2 Effectiveness

The four system monitors, which implemented signature specifications SS1-SS4, were con-

nected to the TXD signal of each RS232 trust benchmark and simulated using ModelSim. The

results are shown in table 4.2. As expected, the more detailed signature specifications detected

a greater number of Trojan activations. An interesting observation is that the system monitor

which implemented the least detailed signature specification, SS1, still detected the Trojan

www.manaraa.com

37

Table 4.2: Results of trust benchmark simulations. An “X” indicates a detection of the hard-

ware Trojan activation while a “–” indicates the contrary.

Benchmarks Trojan Payload SS1 SS2 SS3 SS4

RS232-TL08C0FPI0
Enables embedded inverters to

increase circuit temperature
– – – –

RS232-TR0CS02PI0 Changes one bit of the TXD signal – – X X

RS232-TR0ES12PI0
Changes four bits of the recieved

data value
– – – –

RS232-TR0FS02PI0
Disables the transmission part of

the core
X X X X

RS232-TR2AS0API0 Changes two bit of the TXD signal X X X X

RS232-TR30S0API0
Modifies the functionality of the

transmission FSM
X X X X

RS232-EXTRA BAND
Transmits information using extra

bandwidth
– – X X

RS232-HIGHER BAND
Transmits information via a higher

bandwidth RS232 signal
X X X X

RS232-VAR DELAY
Transmits information by varying

the delay between packets
– – – X

RS232-VAR WIDTH
Transmits information by varying

the width of signal pulses
X X X X

activation in half the benchmarks. This indicates that even simple constraints on a digital

signal can provide a significant level of confidence that the circuit is performing correctly. Two

benchmarks, RS232-TL08C0FPI0 and RS232-TR0ES12PI0, were not detected by any system

monitor. This is because the payload of these Trojan benchmarks didn’t directly affect the TXD

signal. However, in a real-world scenario it’s possible these Trojans would still be detected.

The RS232-TL08C0FPI0 benchmark activates inverters to increase the chip temperature to a

point where performance is degraded and/or the circuit fails. All four system monitors would

detect a circuit failure and may also detect performance degradation depending how it affects

the RS232 core. The RS232-TR0ES12PI0 benchmark modifies the received value. This may

produce an unexpected output that a system monitor detects.

www.manaraa.com

38

CHAPTER 5. CONCLUSIONS

5.1 Summary of Results

In this work we proposed a more realistic, comprehensive solution to IC hardware trust

verification in which persistent verification of ICs in the field is used in addition to one-time

implementable methods. We develop a persistent verification framework in which a few ICs

from a secure design flow are used to monitor several untrusted digital ICs. We design a system

monitor that filters the IO of untrusted digital ICs for a set of signatures that indicate the IC

adheres to its original specification and has not been compromised. A high level signature

specification language is developed to easily specify these signatures. A design automation

tool is created to translate signatures expressed in this high-level specification into HDL. We

also discuss the types of physical hardware that would be suitable for the system monitor

implementation.

We developed four trust benchmarks based on our experience in designing hardware Trojan

prototypes (see Appendix A) and obtained six other benchmarks from Trust-hub to evaluate the

effectiveness and overhead of our approach. Four system monitors were created with unique

signature specifications that varied in detail. Experimental results showed even the system

monitor with the least detailed signature specification detected a significant number of Trojan

activations with reasonable overhead.

Our persistent monitoring approach compliments the one-time implementable methods

which currently represent the majority of the hardware trust verification research. One-time

methods attempt to activate and detect the presence of a hardware Trojan during the verifi-

cation stage of the IC development cycle. However, Trojans are inherently difficult to activate

and are also very hard to detect if the Trojan doesn’t represent a significant portion of the

www.manaraa.com

39

entire chip. Our approach is immune to the issue of Trojan activation since it’s persistently

enabled and the ability to detect a Trojan activation is independent of the Trojan to original

circuit ratio.

5.2 Future Work

Our monitoring approach has made significant contributions to the persistent verification

of digital ICs, but there’s still considerable room for improvement in future work. One of the

limitations to our approach is that hardware Trojans must have a payload that alters the output

of an IC to be detected. While this includes most hardware Trojans, it will not detect hardware

Trojans that covertly leak information from the chip. Future work could explore the persistent

monitoring of side channels such as power, temperature, and electromagnetic analysis to add

further Trojan activation detection capabilities. This could also allow for the monitoring of

analog ICs.

Our persistent verification framework supports digital signal signatures defined for one

signal with static constraints. This could be expanded to support more complex signatures that

include dependencies between signals and dynamic constraints that describe the functionality

of a circuit in greater detail.

The digital signal signatures must remain protocol-independent to address the many differ-

ent protocols present in a large system. However, another layer of abstraction could be added

to the system monitor generator that’s protocol-depended to ease the burden on the system

integrator. For instance an Ethernet class could be added to the SMG that translates a set of

Ethernet parameters into digital signal signatures.

Currently, the system integrator is responsible for defining digital signal signatures. A

tool could be developed to automatically define signatures from simulation data that describes

the circuit’s typical behavior. Such a tool could implement an algorithm to maximize signal

coverage given the available monitoring resources. One of the key aspects of our approach is the

unpredictable nature of the signature specifications. To maintain this property, randomness

must be introduced to the signature selection algorithm to prevent a deterministic selection

www.manaraa.com

40

process that an attacker could replicate.

The effectiveness of our approach could be reevaluated with a more realistic experimental

setup and a more comprehensive set of trust benchmarks. Also, a more complete investigation

of overhead is needed to determine how this approach scales and the feasibility of implementing

this framework in a larger system.

The system monitor architecture could be modified to utilize the partial reconfiguration

capabilities of a FPGA. In this case, more customized DSMs could be swapped in during

specific system operations to offer high resolution monitoring. Also, this architecture may be

useful when monitoring resources are limited. If all IO signal do not need to be monitored

simultaneously, DSMs could be swapped in as needed.

www.manaraa.com

41

APPENDIX PROOF OF CONCEPT

The 2010 Computer Security Awareness Week (CSAW) Embedded Systems Challenge

hosted by the Polytechnic Institute of NYU presented student-led teams around the country

with a hardware hacking challenge. Teams were given the RTL code for two different designs as

well as a BASYS 2 evaluation platform with a Xilinx Spartan3E-100 Field Programmable Gate

Array (FPGA). The two designs contained a ring oscillator-based hardening technique [58] to

detect any design modification. The challenge was to surreptitiously embed malicious circuitry,

also known as hardware Trojans [35], into the design. The following describes our experiences

in circumventing the hardening technique and developing proof-of-concept hardware Trojans.

Competition Details

Our team concentrated the attack effort on the second design, codenamed “Beta”, as we

considered this to be the more vulnerable of the two designs. The Beta design consisted

of an adder circuit with several embedded ring oscillators. A ring oscillator is a delay loop

circuit, typically composed of wires and inverters, that oscillates at a particular frequency.

This frequency is very sensitive to wire length, gate delay, and process variation [65, 24, 40].

In the Beta design, the embedded ring oscillators were inserted with the purpose of detecting

any modifications to the hardware. Such modifications would change the wire lengths of the

ring oscillator, resulting in a discrepancy in frequency values. The Beta design also included

functionality that allowed the user to initiate a challenge for a particular ring oscillator value

and receive the response via the 7-segment display on the BASYS 2 board. According to the

challenge rules, all ring oscillator responses had to remain within 6.6% of their original value.

This paper describes our successful circumvention of the Beta hardening scheme and describes

www.manaraa.com

42

the design methodology we used to create a large and diverse set of hardware Trojans.

Attack Methodology

We implemented two different approaches to circumventing the ring oscillator-based pro-

tection mechanism of Beta:

• A design lockdown approach that fixed the location of the ring oscillators.

• A ring oscillator emulation approach that reproduced the functionality of the ring oscil-

lators with a look-up table.

Design Lock Down

We first considered that changes made to the design would by default result in a modified

physical placement and routing (P&R) of the ring oscillators. As noted previously, the queried

ring oscillator value is by design very sensitive to wire length and other physical variations.

By default, the Xilinx tools for P&R are completely automated to maintain high designer

productivity but also offer options to give the designer more control. These options could be

used to manipulate the location of the ring oscillators and fix the challenge responses while

arbitrarily changing the rest of the design.

We used the Xilinx PlanAhead software (specifically the Floorplanner utility) to analyze

the Beta design and to specify additional P&R constraints. With PlanAhead, we extracted

the FPGA constraints file which we then applied to a compromised version of the Beta design.

Using this method, the effect of the hardening scheme was reduced, but not completely removed.

This allowed our team to implement a few small hardware Trojans that would have been

detected without the use of this technique, but large Trojan designs still produced ring oscillator

responses outside the acceptable variation. This was due to the fact that constraint violations

were necessary to create valid placement and routing schemes for large designs which physically

altered the ring oscillators.

www.manaraa.com

43

Ring Oscillator Emulation

From a black box perspective, the Beta design takes in a sequence of two 8-bit values and

outputs a corresponding 16-bit value. We reasoned that this functionality could be replaced by

a module that would capture the input values and then fetch the corresponding output value

from a lookup table, effectively emulating the ring oscillators. One issue with this approach

was that inter-FPGA process variations would cause a slight difference between the correct

response values on our FPGA and the correct response values on the FPGA used to evaluate

our design. However, given the wide range of acceptable responses, the outputs from our chip

would most likely fall within the contest’s allowable variation [43]. Another issue was storing

the entirety of the challenge-response pairs, for as the Beta design required a 30KB (for 15,360

16-bit challenge-responses) lookup table, there was only 9KB of dedicated memory available

on the Spartan3E-100 FPGA.

Further testing led to two key observations regarding the ring oscillator frequency values.

First, for a given input, the lower 5-6 bits of the ring oscillator response varied in a seemingly

random manner. Therefore, it wasn’t necessary to store these bits in the lookup table as

they could be reproduced with a pseudo-random number generator. Second, not all challenge

vectors produced oscillations and there appeared to be long strings of 0’s and 1’s in the list of

ring oscillator responses. We hypothesized it would be possible to compress the ring oscillator

frequencies to a size that would fit on the FPGA, but needed to further characterize the ring

oscillators to confirm our theory.

This ring oscillator characterization required multiple testing and recording passes of the

output values, in order to analyze average responses and the amount of variation. To manually

conduct this testing procedure would have taken several weeks to complete and would have been

very tedious and error-prone. Consequently, our team attempted two different approaches to

obtain these ring oscillator values.

www.manaraa.com

44

���������	
�����	����

�
��
��
��
��
�	

�
�

�
�
�
�
�

�
��
��
�
�
�
��
�
��
�
�

��������������������

����� ���� ������

� ����� ����� ����� �����

� ����� ����� ����� �����

��� ����� �����

����� ����� �����

������

 �����!���"�#�$ �

�"����	����

��%�

��

11

3

8

8

4

12

3

8

&����'�

��������$%

����(")

���

�����

�����

Figure A.1: Automated testing environment

Post-P&R Simulation

The Xilinx synthesis tools have the capability to generate timing models after each step of

FPGA design generation. For example, after P&R, a Verilog or VHDL model of the design is

created with components broken down into individual slices and LUTs, and timing information

is added as delays for each individual component. The ModelSim HDL simulator was used to

generate the timing results. Unfortunately, responses were off by a significant margin because

the average-case timing information was not sufficiently accurate to model the ring oscillators.

However, this simulation did correctly determine which challenge vectors produced oscillations

and long strings of 0’s and 1’s. This confirmed that the dataset was compressible.

www.manaraa.com

45

Figure A.2: Recording ring oscillator responses for all challenge vectors

Automated Testing Environment

We decided to take the direct approach of automating the testing procedure with addi-

tional hardware to obtain the ring oscillator values. Figure A.1 shows our automated testing

environment. The input and output pins of the FPGA were connected to a microcontroller on

a PICDEM 2 Plus evaluation board. A PC sent input vectors to the microcontroller, which

set the appropriate inputs on the FPGA. The microcontroller then read the 7-segment display

and sent the value back to the PC where it was analyzed and recorded. Manual testing was

still possible via the switches and pushbuttons on the PICDEM 2 Plus board. A picture of the

testing setup is shown in fig. A.2. The automated testing hardware reduced the time to test

the Beta design from a period of several weeks to a few hours.

Using the automated testing hardware, we recorded each ring oscillator response 10 times

for all 15,360 inputs. The 10 datasets were analyzed to determine the average ring oscillator

response for each input and amount of variation present within the data. Three distinct groups

www.manaraa.com

46

������������	
���������������	������� ��

���������		
�����������������������������

����� ������������ ���!��"#��

$

�

%�& '

��������!���'(����	(�
�������	

������!#���������"��)
�������'

�������$����	
���������������'�

�������$����'
���������������	*�

�������$����	
������������!�#��!�+

������������'
���������������%������ '�

��
		���������� ��������

',''''

','''	

','''-

','''�

','''*

','''�

'

'

'

	

	

',*�-*

... ...

�����������

'/�	'''''''		

	/�		''''''	'

�/�'	''		''''

...
','''0 ',01

-/�'''	'			'	

(a) Compression scheme

Address
Reg

1
challenge

vector
+

1
+

Jitter
Reg

0

1

x”00" &
mem_out(7 - 0) 00

01

10

11

x”0000"

x”0001"

Challenge
Response

Reg

mem_out(9 - 8)

On-Chip Mem

0: 1000000011

1: 1100000010

3: 0100110000

...

2: 0001011101

State Machine

latch_response

inc_addr

mem_out

”00" & mem_out(7 - 0)

&

clock

(b) Architecture

Figure A.3: Ring oscillator emulator module

of data emerged: long strings of 0’s and 1’s with no variation, a few sporadic values greater

than 1 but less than 28 which had no variation, and values greater than or equal to 214 that

typically had 5-6 bits of variation. Another interesting discovery was there were no values

greater than 215 − 1 and, therefore, it wasn’t necessary to store the most significant bit of the

oscillator values in the lookup table as this was always zero.

We created the compression scheme shown in fig. A.3a to compress the ring oscillator

dataset. Each table entry is 10 bits wide. The most significant bit determines if the table

entry represents a string of values (0’s or 1’s) or a single frequency value. When a table entry

represents a string, the next most significant bit specifies if the string is composed of 0’s or

1’s and the lower 8 bits specifies the length of the string. If the string length is greater than

255, then the string is divided into several table entries. When a table entry represents a single

frequency value, the next most significant bit represents bit 14 of the frequency value. The lower

eight bits represent either bits 13-6 or 7-0 of the frequency value, depending if the frequency

is large (greater than or equal to 214) or small, respectively. This distinction is necessary

because small frequency values have no variation whereas large frequency values always have

some variation. Using this compression scheme, we reduced the size of the lookup table from

www.manaraa.com

47

Beta Design Flip-Flops LUTs BRAMs Delay

Original 98 (5%) 152 (7%) 0 (0%) 3.409ns

w/ RO Emulator 128 (6%) 237 (12%) 4 (100%) 3.931ns

Table A.1: Ring oscillator emulator module overhead

30KB to less than 6KB.

A ring oscillator emulator module was created based on the compressed lookup table ap-

proach (see fig. A.3b). A state machine was implemented to latch the challenge vector, perform

a sequential search of the compressed lookup table, and return the corresponding ring oscillator

challenge response. To reproduce the slight variation present in the least six significant bits of

values greater than or equal to 214, a counter incrementing every clock cycle was latched when

the ring oscillator value was output. This appeared to be random variation to the user. Im-

plementing this module in the Beta design allowed us to add any Trojan to the design without

affecting the ring oscillator value displayed to the user.

Table A.1 shows the overhead introduced by the ring oscillator emulator module. The

impact on area and delay was minimal. The remaining flip-flops and LUTs allowed for the

implementation of elaborate Trojans several times the size of the original circuit. Since the

original Beta design didn’t utilize the on-chip block RAMs, we were able to use all 4 BRAMs

to store the compressed ring oscillator frequency dataset.

Trojan Design

We designed a diverse set of Trojans based on the taxonomy shown in fig. 2.1 (derived

from [35]). Each Trojan implemented a circumvention technique to mitigate the Beta hardening

method as well as an effect and activation mechanism. While our Trojans specifically targeted

the Beta design, we remained mindful of their real-world practicality.

Effects

We concentrated on two aspects of functional modification: the frequency of modification

and the type of modification. These aspects are highly dependent on the target. A Trojan

www.manaraa.com

48

Circumvention
Technique

Design
Lockdown

Ring Oscillator
Emulation

Activation
Mechanism

Always On

Effects

Change the
Functionality

Downgrade
Performance

Leak
Information

Denial of
Service

User Input

Time-Based

Physical-

Condition-Based

Figure A.4: Our Trojan Taxonomy (derived from [35])

that constantly modifies functionality will have a large initial impact but is more likely to be

detected. A Trojan that produces malfunctions very sporadically will have less impact in the

short term, but may have a larger impact in the long term since its presence could go unnoticed.

Similarly, the type of malfunction should be large enough to have an impact but small enough

to minimize detection.

Keeping these two aspects in mind, we implemented Trojans with both types of malfunction

frequency while trying to keep the type of malfunction moderate. One Trojan replaced an AND

gate with a XOR gate in the adder to create a sporadic malfunction dependent on the input

value. Another persistently inverted a single bit of the output.

Since the Beta design didn’t contain “secret” information, we focused on different methods

of leaking information from the FPGA. The BASYS 2 board contained minimal hardware and

peripherals. This offered both an advantage and a disadvantage in terms of leaking information.

The disadvantage was that there were simply less channels to transmit information. The

advantage was that all output peripherals (except the USB) were directly controlled by the

FPGA, creating a larger Trojan design space to leak information. For instance, the FPGA

www.manaraa.com

49

was connected directly to the VGA port. This allowed for the implementation of Trojans that

exploited the VGA protocol, such as leaking information on the data lines during the horizontal

and vertical syncs as described in [15].

One of our Trojans used the external oscillator IC socket on the BASYS 2 board as an an-

tenna to leak information via an RF signal in the AM radio frequency range. The transmission

could be heard as a beeping pattern on a standard AM radio. The radio had to be very close

(a few inches) to the board as the antenna was not optimal, but extending the length of the

antenna by placing a wire in the IC socket extended the reception distance to several feet.

Similar to functional modification, our performance degradation design methodology con-

centrated on the frequency and level of reduced performance. One way in which we degraded

the performance of Beta was by implementing a Trojan that increased the timing delay of the

addition operation. The Trojan held the inputs for a pre-set number of cycles before sending

the data to the adder. Trojans on the opposite end of the spectrum produced a constant denial

of service once activated.

Activation Mechanism

Activation mechanisms were chosen to correspond to the Trojan effect. For instance, the

“Always On” activation mechanism would be inappropriate to pair with a “Denial of Service”

effect as this Trojan would certainly be detected during chip verification given a real-world sce-

nario. However, this activation mechanism may be appropriate for a Trojan that covertly leaks

information. For many Trojans, we used a combination of triggers to complicate activation.

An example of an activation mechanism we implemented was one that used a combination of

a specific user input with a physical-condition-based internal trigger. This trigger was designed

to work with the ring oscillator emulator module circumvention technique. In this case, the

ring oscillators embedded in the Beta design were no longer utilized and could be used to

create a crude temperature sensor by exploiting the relationship between temperature and the

frequency of ring oscillation [74]. Since an unexpected rise in temperature could activate the

Trojan before it could affect its intended target, the activation mechanism was combined with

www.manaraa.com

50

a specific user trigger. As temperature increased, the ring oscillator interconnection resistance

increased, reducing the frequency of oscillations. The room temperature ring oscillator value

was set as the basis for comparison. When the particular input was entered, the ring oscillator

value was compared with the base value. If the difference was greater than a set threshold,

then a Trojan was activated to produce a slight error in the result.

Results

Our ring oscillator emulation approach was successful in circumventing the Beta harden-

ing mechanism and allowing the implementation of any Trojan the hardware resources would

support. This was achieved by exploiting the relatively small challenge-response set associated

with Beta’s ring oscillator-based Trojan detection method. We acknowledge this approach was

specific to the Beta hardening scheme and is limited by the number of challenge-response vec-

tors in general. We also acknowledge this scheme was based on the assumption that the design

would be verified at room temperature using standard operating voltage; the same environ-

ment in which we measured the ring oscillator frequency values. Our design was evaluated at

the CSAW event in October 2010 and resulted in a 2nd place finish in the embedded systems

challenge.

www.manaraa.com

51

BIBLIOGRAPHY

[1] Intellectual property (IP) challenges and concerns of the semiconductor equipment and

materials industry. White paper, SEMI, 2008.

[2] Trust-hub. http://trust-hub.org, 2010. Accessed on 04/2011.

[3] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic. Detecting Trojans through leakage

current analysis using multiple supply pad IDDQs. IEEE Transactions on Information

Forensics and Security, 5(4):893–904, Dec. 2010.

[4] Sally Adee. The hunt for the kill switch. IEEE Spectrum, 45, May, 2008.

[5] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan detection using

IC fingerprinting. In IEEE Symposium on Security and Privacy (SP), pages 296–310, May

2007.

[6] Y. Alkabani and F. Koushanfar. Consistency-based characterization for IC Trojan de-

tection. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pages 123–127, Nov. 2009.

[7] Global Semiconductor Alliance. Semiconductor & fabless facts. http://www.gsaglobal.

org/resources/industrydata/facts.asp, 2011. Accessed on 07/2011.

[8] Altera. Altera breaks semiconductor industry record for most transistors on an

integrated circuit. http://www.altera.com/corporate/news room/releases/2011/

products/nr-sv milestone.html, 2011. Accessed on 06/2011.

www.manaraa.com

52

[9] Semiconductor Industry Association. International technology roadmap for semiconduc-

tors 2009 edition. http://www.itrs.net/Links/2009ITRS/Home2009.htm. Accessed on

06/2011.

[10] M. Banga, M. Chandrasekar, L. Fang, and M.S. Hsiao. Guided test generation for isolation

and detection of embedded Trojans in ICs. In ACM Great Lakes Symposium on VLSI

(GLSVLSI), pages 363–366, 2008.

[11] M. Banga and M.S. Hsiao. A region based approach for the identification of hardware

Trojans. In IEEE International Symposium on Hardware-Oriented Security and Trust

(HOST), pages 40–47, June 2008.

[12] M. Banga and M.S. Hsiao. A novel sustained vector technique for the detection of hardware

Trojans. In International Conference on VLSI Design, pages 327–332, 2009.

[13] M. Banga and M.S. Hsiao. VITAMIN: Voltage inversion technique to ascertain malicious

insertions in ICs. In IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pages 104–107, July 2009.

[14] M. Banga and M.S. Hsiao. Trusted RTL: Trojan detection methodology in pre-silicon

designs. In IEEE International Symposium on Hardware-Oriented Security and Trust

(HOST), pages 56–59, June 2010.

[15] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno. A case study in hardware

Trojan design and implementation. International Journal of Information Security, 10:1–

14, 2011.

[16] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing IC piracy using reconfigurable

logic barriers. IEEE Design & Test of Computer, 27(1):66–75, 2010.

[17] G. Bloom, R. Simha, and B. Narahari. OS support for detecting Trojan circuit attacks. In

IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pages

100–103, July 2009.

www.manaraa.com

53

[18] Defense Science Board. Task force on high performance microchip supply. http:

//www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA435563&Location=U2&doc=GetTRDoc.pdf,

2005. Accessed on 08/2011.

[19] Clair Brown and Greg Linden. Chips and Change: How Crisis Reshapes the Semiconductor

Industry. The MIT Press, 2009.

[20] Rajat Subhra Chakraborty, Francis Wolff, Somnath Paul, Christos Papachristou, and

Swarup Bhunia. MERO: A statistical approach for hardware Trojan detection. In In-

ternational Workshop on Cryptographic Hardware and Embedded Systems (CHES), pages

396–410, 2009.

[21] R.S. Chakraborty, S. Narasimhan, and S. Bhunia. Hardware Trojan: Threats and emerg-

ing solutions. In IEEE International High Level Design Validation and Test Workshop

(HLDVT), pages 166–171, Nov. 2009.

[22] John Clark, Sylvain Leblanc, and Scott Knight. Hardware Trojan horse device based

on unintended USB channels. International Conference on Network and System Security

(NSS), 0:1–8, 2009.

[23] Trusted Computing Group. Trusted platform module. http://www.

trustedcomputinggroup.org/developers/trusted platform module/, 2011. Ac-

cessed on 07/2011.

[24] Jorge Guajardo, Sandeep Kumar, Geert-Jan Schrijen, and Pim Tuyls. FPGA intrinsic

PUFs and their use for IP protection. In Cryptographic Hardware and Embedded Systems

(CHES), pages 63–80. 2007.

[25] Spencer S. Hsu. U.S. charges florida pair with selling counterfeit computer chips from china

to the U.S. navy and military. http://www.washingtonpost.com/wp-dyn/content/

article/2010/09/14/AR2010091406468.html, 2010. Accessed on 07/2011.

www.manaraa.com

54

[26] Ted Huffmire, Brett Brotherton, Nick Callegari, Jonathan Valamehr, Jeff White, Ryan

Kastner, and Tim Sherwood. Designing secure systems on reconfigurable hardware. ACM

Transactions on Design Automation of Electronic Systems, 13:44:1–44:24, July 2008.

[27] Jeorge S. Hurtarte, Evert A. Wolsheimer, and Lisa M. Tafoya. Understanding Fabless IC

Technology. Newnes, Newton, MA, USA, 2007.

[28] Intel. Moore’s law timeline. http://download.intel.com/pressroom/kits/events/

moores law 40th/MLTimeline.pdf. Accessed on 06/2011.

[29] C.E. Irvine and K. Levitt. Trusted hardware: Can it be trustworthy? In Design Automa-

tion Conference (DAC), pages 1–4, 2007.

[30] Len Jelinek. Consolidation thins the ranks of leading-edge semiconductor foundries.

http://www.isuppli.com/Semiconductor-Value-Chain/MarketWatch/Pages/

Consolidation-Thins-the-Ranks-of-Leading-Edge-Semiconductor-Foundries.

aspx, 2011. Accessed on 06/2011.

[31] S. Jha and S.K. Jha. Randomization based probabilistic approach to detect Trojan circuits.

In IEEE High Assurance Systems Engineering Symposium (HASE), pages 117–124, 2008.

[32] Y. Jin, N. Kupp, and Y. Makris. Experiences in hardware Trojan design and imple-

mentation. In IEEE International Symposium on Hardware-Oriented Security and Trust

(HOST), pages 50–57, 2009.

[33] Y. Jin and Y. Makris. Hardware Trojan detection using path delay fingerprint. In IEEE

International Symposium on Hardware-Oriented Security and Trust (HOST), pages 51–57,

2008.

[34] Y. Jin and Y. Makris. Hardware Trojans in wireless cryptographic ICs. IEEE Design &

Test of Computers, 27(1):26–35, 2010.

[35] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. Trustworthy hardware: Iden-

tifying and classifying hardware Trojans. Computer, 43(10):39 –46, Oct. 2010.

www.manaraa.com

55

[36] Lok-Won Kim, J.D. Villasenor, and C.K. Koc. A Trojan-resistant system-on-chip bus

architecture. In IEEE Military Communications Conference (MILCOM), pages 1–6, Oct.

2009.

[37] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and

Yuanyuan Zhou. Designing and implementing malicious hardware. In USENIX Work-

shop on Large-Scale Exploits and Emergent Threats (LEET), pages 5:1–5:8, 2008.

[38] I. Kuon and J. Rose. Quantifying and Exploring the Gap Between FPGAs and ASICs.

Springer, 2009.

[39] Mark LaPedus. Samsung lags in foudry rankings. http://www.eetimes.com/

electronics-news/4212366/Samsung-lags-in-foundry-rankings-, 2011. Accessed on

07/2011.

[40] Jie Li and J. Lach. At-speed delay characterization for IC authentication and Trojan horse

detection. In IEEE International Symposium on Hardware-Oriented Security and Trust

(HOST), pages 8–14, 2008.

[41] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John

Mitchell, and Mark Horowitz. Architectural support for copy and tamper resistant soft-

ware. In Proceedings of the International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), pages 168–177, 2000.

[42] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Trojan

side-channels: Lightweight hardware Trojans through side-channel engineering. In In-

ternational Workshop on Cryptographic Hardware and Embedded Systems (CHES), pages

382–395, 2009.

[43] A. Maiti, J. Casarona, L. McHale, and P. Schaumont. A large scale characterization of

RO-PUF. In IEEE International Symposium on Hardware-Oriented Security and Trust

(HOST), pages 94–99, June 2010.

www.manaraa.com

56

[44] C. Maxfield. Achronix’s next-gen FPGAs in Intel’s 22nm process. http://www.eetimes.

com/electronics-products/electronic-product-reviews/fpga-pld-products/

4210286/Achronix-s-next-gen-FPGAs-in-Intel-s-22nm-process, 2010. Accessed on

08/2011.

[45] Dylan McGrath. Intel to fab FPGAs for startup Achronix. http://www.eetimes.

com/electronics-news/4210263/Intel-to-fab-FPGAs-for-startup-Achronix?

pageNumber=1, 2010. Accessed on 08/2011.

[46] D. Mclntyre, F. Wolff, C. Papachristou, S. Bhunia, and D. Weyer. Dynamic evaluation

of hardware trust. In IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pages 108–111, July 2009.

[47] MIT. Timeline: March of the machines. http://www.technologyreview.com/

computing/25151/, 2010. Accessed on 06/2011.

[48] Ron Molnar. IC assembly and test market poised for growth in 2010. Chip Scale Review,

March-April 2010.

[49] S. Narasimhan, Dongdong Du, R.S. Chakraborty, S. Paul, F. Wolff, C. Papachristou,

K. Roy, and S. Bhunia. Multiple-parameter side-channel analysis: A non-invasive hardware

Trojan detection approach. In IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), pages 13–18, June 2010.

[50] S.R. Nassif. Process variability at the 65nm node and beyond. In IEEE Custom Integrated

Circuits Conference (CICC), pages 1–8, Sept. 2008.

[51] Federal Business Opportunities. A TRUST for integrated circuits. https://www.fbo.

gov/index?s=opportunity&mode=form&id=db4ea611cad3764814b6937fcab2180a&tab=

core& cview=1, 2006. Accessed on 07/2011.

[52] Federal Business Opportunities. Iarpa trusted integrated chips (tic) pro-

gram. https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=

2822fed19cdcb74f464dae9718d5f3d8, 2011. Accessed on 08/2011.

www.manaraa.com

57

[53] Federal Business Opportunities. Integrity and reliability of integrated cir-

cuits (IRIS). https://www.fbo.gov/index?s=opportunity&mode=form&id=

0890f344196e5467640e56db7a33f597&tab=core& cview=1, 2011. Accessed on 06/2011.

[54] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey. Hardware Trojan horse detection

using gate-level characterization. In Design Automation Conference (DAC), pages 688–

693, July 2009.

[55] R. Rad, J. Plusquellic, and M. Tehranipoor. A sensitivity analysis of power signal methods

for detecting hardware Trojans under real process and environmental conditions. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 18(12):1735–1744, Dec.

2010.

[56] R.M. Rad, Xiaoxiao Wang, M. Tehranipoor, and J. Plusquellic. Power supply signal cali-

bration techniques for improving detection resolution to hardware Trojans. In IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 632–639, 2008.

[57] D. Rai and J. Lach. Performance of delay-based Trojan detection techniques under pa-

rameter variations. In IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pages 58–65, July 2009.

[58] J. Rajendran, V. Jyothi, O. Sinanoglu, and R. Karri. Design and analysis of ring oscillator

based design-for-trust technique. In IEEE VLSI Test Symposium (VTS), pages 105–110,

May 2011.

[59] S.K. Saha. Modeling process variability in scaled CMOS technology. IEEE Design & Test

of Computers, 27(2):8–16, March-April 2010.

[60] H. Salmani, M. Tehranipoor, and J. Plusquellic. New design strategy for improving hard-

ware Trojan detection and reducing Trojan activation time. In IEEE International Sym-

posium on Hardware-Oriented Security and Trust (HOST), pages 66–73, 2009.

www.manaraa.com

58

[61] H. Salmani, M. Tehranipoor, and J. Plusquellic. A layout-aware approach for improving lo-

calized switching to detect hardware Trojans in integrated circuits. In IEEE International

Workshop on Information Forensics and Security (WIFS), pages 1–6, Dec. 2010.

[62] Joseph Lieberman (U.S. Senator). Whitepaper on national security aspects of the global

migration of the U.S. semiconductor industry. White paper, U.S. Senate, 2003.

[63] Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer, and W. Clay. Process

reliability based Trojans through NBTI and HCI effects. In NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), pages 215–222, June 2010.

[64] Defined Business Solutions. Trusted foundry. http://www.trustedfoundryprogram.

org/, 2011. Accessed on 07/2011.

[65] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authen-

tication and secret key generation. In Proceedings of the Design Automation Conference

(DAC), pages 9–14, 2007.

[66] Gookwan Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas De-

vadas. AEGIS: Architecture for tamper-evident and tamper-resistant processing. In Pro-

ceedings of the International Conference on Supercomputing (ICS), pages 160–171, 2003.

[67] M. Tehranipoor and F. Koushanfar. A survey of hardware Trojan taxonomy and detection.

IEEE Design & Test of Computers, 27(1):10–25, 2010.

[68] M. Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri, J. Rajendran, and K. Rosen-

feld. Trustworthy hardware: Trojan detection and design-for-trust challenges. Computer,

44:66–74, 2011.

[69] Xiaoxiao Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic. Hardware Trojan detec-

tion and isolation using current integration and localized current analysis. In IEEE In-

ternational Symposium on Defect and Fault Tolerance of VLSI Systems (DFTVS), pages

87–95, 2008.

www.manaraa.com

59

[70] Xiaoxiao Wang, M. Tehranipoor, and J. Plusquellic. Detecting malicious inclusions in se-

cure hardware: Challenges and solutions. In IEEE International Symposium on Hardware-

Oriented Security and Trust (HOST), pages 15–19, 2008.

[71] F. Wolff, C. Papachristou, S. Bhunia, and R.S. Chakraborty. Towards Trojan-free trusted

ICs: Problem analysis and detection scheme. In Design, Automation and Test in Europe

(DATE), pages 1362–1365, 2008.

[72] Xilinx. Core generator guide. http://www.xilinx.com/itp/xilinx6/books/docs/cgn/

cgn.pdf. Accessed on 07/2011.

[73] X. Zhang and M. Tehranipoor. Case study: Detecting hardware Trojans in third-party

digital IP cores. In IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), pages 67–70, June 2011.

[74] Kenneth M. Zick and John P. Hayes. On-line sensing for healthier FPGA systems. In

Proceedings of the International Symposium on Field Programmable Gate Arrays (FPGA),

pages 239–248, 2010.

	2011
	Persistent monitoring of digital ICs to verify hardware trust
	Justin Richard Rilling
	Recommended Citation

	thesis.dvi

